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Diameters of vortex spirals in three-dimensional turbulence
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CB3 9EW Cambridge, United Kingdom
~Received 18 March 1997; revised manuscript received 15 June 1999!

It has been proposed by a number of authors that fully developed turbulence contains spiral-like vorticity
distributions that wrap up around strained vortex tubes, but numerical simulations seem to show otherwise. In
the present paper, we suggest an explanation for the numerical results. Using stability considerations and
numerical results for the Reynolds numbers of the most intense vortex tubes, we obtain an estimate for the
characteristic diameter of the largest spirals as a function of the Reynolds number. We find that this diameter
decreases rapidly, relative to the integral scale, as the Reynolds number tends to infinity.
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It is well known that the Kelvin-Helmholtz instability
generates spiral-like structures in vortex sheets, and this
motivated a number of authors@1–6# to consider spiral mod-
els for the inertial-range structure of turbulence. The inter
in such models is to a large extent due to the striking re
that a model with sheets wrapping around axially strain
vortex tubes leads to a Kolmogorov25

3 power law for the
inertial-range energy spectrum@1#.

However, direct numerical simulations@7–9# show that
the vorticity field of homogeneous turbulence at Taylor m
croscale Reynolds numbersRl'150– 170 contains no sig
nificant spiral structure at all. Since laminar flows and flo
in transition to turbulence@10# do contain spiral-like struc-
tures, the characteristic spiral diameter apparently decre
rapidly asRl increases.

@The authors of Ref.@10# did not calculateRl @14#, which
makes it difficult to compare with Refs.@7–9#. However, the
energy spectrum shown in Ref.@10# falls off like a power
law over a range of wave numbers that is consistent wit
value ofRl well below 50.#

In the present paper, we consider the effect of small-sc
disturbances on spiral diameters. In previous works, it
been assumed~without discussion apparently! that such dis-
turbances have no effect on the diameters. We find, on
contrary, that disturbances have a strong effect on
Reynolds-number scaling of spiral diameters.

Specifically, we argue in the following that

D } Rl
25/4L, ~1!

where D is the characteristic spiral diameter andL is the
integral scale. To derive this result, we assume thatD scales
like the largest distance from vortex tubes at which th
deform the fluid faster than average small-scale disturbat
do. The Reynolds-number scaling of this distance can in t
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be estimated by means of a numerical result for
Reynolds-number scaling of the circulation-based Reyno
number of the most intense vortex tubes@9#. However, the
value of the exponent in Eq.~1! is only suggestive; the main
point is thatD/L decreases rapidly asRl tends to infinity.

Let us first estimate the largest rate at which a given tu
can deform the fluid at distances much larger than the K
mogorov disspation scaleh. Reference@9# reports that the
most intense tubes have diameters of orderh, so we may
approximate the flow at distances much larger thanh by that
around a vortex line with similar total circulationG; such an
approximation suffices when seeking an order of magnit
estimate of the rate at which the tube deforms the fluid.
now u(r ) denote the numerical value of the velocity at
distancer from the vortex line,

u~r !5
G

2pr
. ~2!

Such a vortex line deforms the fluid at distancer at the rate

s~r !5
uGu

2pr 2 . ~3!

Introducing a circulation-based Reynolds numberRv ,

Rv5
uGu
n

, ~4!

we get

s~r !5
Rvn

2pr 2 . ~5!

We next estimate the rate at which small-scale dist
bances deform the fluid. In homogeneous isotropic tur
lence, the smallest velocity disturbances typically deform
fluid at rates comparable with the root-mean-square vorti
~recall that the fastest growing perturbations of vortex she
are those at small scales@12#!. Let us assume that small-sca
disturbances deform vortex sheets at similar rates. ThusD
scales like the distance at which the deformation rates
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duced by tubes are of the same magnitude as the root-m
square vorticity of the turbulence,

s~D ! } ^v2&1/2, ~6!

where} denotes proportionality aŝv2& increases to infinity.
Using Eq.~5!, we get

D } ^v2&21/4ARvn. ~7!

Since@13#

n5^v2&1/2h2,

h } Rl
23/2L, ~8!

Eq. ~6! yields

D } LARv /Rl
3. ~9!
u-

e

an-Reference@9# reports that the characteristic Reynolds nu
ber Rv of the most intense vortex tubes in homogeneo
isotropic turbulence grows approximately like

Rv } Rl
1/2. ~10!

Inserting in Eq.~9!, we obtain Eq.~1!.
We have argued that vortex tubes sustain vortex spi

only at distances significantly smaller thanD. Although pas-
sive scalar fields evolve in a different way than vortici
fields, this argument may explain also why a spiral model
passive scalar fields@3# fails when tested experimentall
@11#.

Finally, our estimate of the characteristic spiral diame
D does not apply to two-dimensional turbulence. Indeed, s
ral models for two-dimensional turbulence@6# ~see also ref-
erences therein! receive some support from numerical stu
ies.
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